Juliet balconies using BALCONY 2 System (Aerofoil) handrail

Structural Calculations for Juliet balconies using BALCONY 2 System (Aerofoil) handrail

Our ref: JULB2NB280317 Date of issue: March 2017

DESIGN TO EUROCODES & CURRENT BRITISH STANDARDS

Design standards:
EN 1990
EN 1991
EN 1993
EN 1999
BS 6180:2011

Eurocode 0:
Eurocode 1:
Eurocode 3:
Eurocode 9:
Eurocode:
British standard:
Eurocode 1

Basis of structural design.
Actions on structures.
Design of steel structures.
Design of aluminium structures.
UK National annex for Eurocode
Barriers in and about buildings.
Wind actions on structures

Design loads:
Occupancy class/es for which this design applies
= Domestic and residential activities (i) & (ii)
(Office and work areas not included elsewhere (iii), (iv) & (v)
Areas without obstacles for moving people and not susceptible to overcrowding (viii) & (ix)

Service load on handrail \(Q_k \) = 0.74 kN/m uniformly distributed line load acting 1100mm above finished floor level. (Table 2: BS6180:2011)

Service load applied to the glass infill \(Q_{k1} \) = A uniformly distributed load of 1.0 kN/m²

Point load on glass infill = 0.50 kN applied to any part of the glass fill panels.
Table 2: BS6180:2011

<table>
<thead>
<tr>
<th>Type of occupancy for part of the building or structure</th>
<th>Examples of specific use</th>
<th>Horizontal uniformly distributed line load (kN/m)</th>
<th>Uniformly distributed load applied to the infill (kN/m²)</th>
<th>A point load applied to part of the infill (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic and residential activities</td>
<td>(i) All areas within or serving exclusively one single family dwelling including stairs, landings, etc. but excluding external balconies and edges of roofs
(ii) Other residential, i.e. houses of multiple occupancy and balconies, including Juliette balconies and edges of roofs in single family dwellings</td>
<td>0.36</td>
<td>0.5</td>
<td>0.25</td>
</tr>
<tr>
<td>Offices and work areas not included elsewhere, including storage areas</td>
<td>(a) Light access stairs and gangways not more than 600 mm wide
(b) Light pedestrian traffic routes in industrial and storage buildings except designated escape routes
(c) Areas not susceptible to overcrowding in office and institutional buildings, also industrial and storage buildings except as given above</td>
<td>0.22</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Areas where people might congregate</td>
<td>(d) Areas having fixed seating within 50 mm of the barrier, balustrade or parapet</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Areas with tables or fixed seatings</td>
<td>(e) Restaurants and bars</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Areas without obstacles for moving people and not susceptible to overcrowding</td>
<td>(f) Stairs, landings, corridors, ramps
(g) External balconies including Juliette balconies and edges of roofs, footways and pavements within building curtilage adjacent to basement/sunken areas</td>
<td>0.74</td>
<td>1.0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

- These imposed loads are considered as three separate load cases. They are not combined.
- Factored loads are used for checking the limit state of static strength of a member.
- The service loads are multiplied by a partial factor for variable action \(\gamma_{Q1} \) of 1.5 to give the ultimate design load for leading variable action.

Deflection:
- All structural members deflect to some extent under load. Service loads are used to calculate deflections.
- The total displacement of any point of a barrier from its original unloaded position under the action of service loads is limited to 25mm.
Typical section & handrail profile moment of inertia

I_{yy} = 87 \text{ cm}^4
Balcony 2 system: Section properties of handrail:

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material type</td>
<td>Extruded aluminium type 6063 T5</td>
</tr>
<tr>
<td>Characteristic 0.2% proof stress</td>
<td>(f_0) = 130 N/mm(^2)</td>
</tr>
<tr>
<td>Characteristic ultimate tensile strength</td>
<td>(f_u) = 175 N/mm(^2)</td>
</tr>
<tr>
<td>Modulus of elasticity</td>
<td>(E) = 70 000 N/mm(^2)</td>
</tr>
<tr>
<td>Shear modulus</td>
<td>(G) = 27 000 N/mm(^2)</td>
</tr>
<tr>
<td>Moment of inertia about the y-y axis</td>
<td>(I_{yy}) = 87 cm(^4)</td>
</tr>
<tr>
<td>Least elastic modulus about the y-y axis</td>
<td>(W_{el}) = 14.442 cm(^3)</td>
</tr>
<tr>
<td>Partial factor for material properties</td>
<td>(\gamma_{M1}) = 1.10</td>
</tr>
<tr>
<td>Value of shape factor (conservative value)</td>
<td>(\alpha) = (W_{pl}/W_{el})</td>
</tr>
<tr>
<td>Design ultimate resistance to bending about the y-y axis</td>
<td>(M_{Rd}) = (M_{Rd,pl}/\gamma_{M1})</td>
</tr>
<tr>
<td></td>
<td>(= \alpha W_{el} f_0 / \gamma_{M1})</td>
</tr>
<tr>
<td></td>
<td>(= 1.2 \times 14.442 \text{ cm}^3 \times 130 \text{ N/mm}^2 \times (10)^3)</td>
</tr>
<tr>
<td></td>
<td>(= 2.048 \text{ kNm})</td>
</tr>
</tbody>
</table>
Design ultimate horizontal load on handrail = F = 0.74 kN/m x 1.5

Design horizontal moment on handrail between points of support = M = \(\frac{F L^2}{8} \)

Allowable span L between points of support based upon the moment capacity of the handrail = \[\left[8 \times M_{Rd} \right]^{0.5} \frac{F}{1.11} \] = 3.86m say = 3.80m

In terms of bending capacity the handrail can span up to 3.80m simply supported between points of support.

However the service load deflection is limited to a maximum of 25mm.

Consider service load deflection for a 3500mm span centre to centre of the support brackets.

\[\Delta = \frac{5 F L^4}{384 E I} \]

For a span of 3.50m c/c \(\Delta = \frac{5 \times (740 \times 3.50 \times (3500)^3}{384 \times 70000 \times 87 \times (10)^4} \) = 23.74mm < 25mm OK

Therefore deflection limitations govern the allowable span of the handrail between points of support in respect of the horizontal imposed service uniformly distributed line load.

In order to comply with service load deflection limitations the allowable span of the handrail is limited to 3.50 metres between the centres of supporting brackets. Handrail brackets are 80mm wide, so the maximum overall length of the handrail is 3.58m. The maximum clear opening width is 3580 – 260 = 3320mm.

Handrail brackets:
The horizontal imposed design load on the handrail can only act over the clear width of the opening, ie. 3320mm for a handrail 3580mm long overall. The bracket design load H is calculated for a maximum loaded length equal to the maximum clear opening width.

For the maximum clear opening width of 3320mm:

Ultimate horizontal imposed load on the handrail bracket = H = \(\frac{(0.74 \text{ kN/m} \times 1.5)}{2} \) = 1.843 kN

Section (A) dimensions = 80mm wide x 12mm thick, less 2 No. 12mm diameter holes for 10mm diameter bolts. = 56 x 12mm effective section.

Plastic section modulus \(W_{pl} = \frac{56 \times (12)^2}{4} = 2016 \text{ mm}^3 \)
Bracket section (A)

Factored applied moment

\[M = 1.843 \text{kN} \times 0.068 \]
\[M = 0.125 \text{kNm} \]

Limiting stress in bending

\[f_o = 130 \text{ N/mm}^2 \]

Moment capacity of section

\[M_c = 130 \text{ N/mm}^2 \times 2016 \text{ mm}^3 \times (10)^{-6} \]
\[M_c = 0.238 \text{kNm} \]

Section (B)

Dimensions at section (B)

= 80 mm wide x 11 mm thick

Factored applied moment

\[M = 1.843 \text{kN} \times 0.052 \]
\[M = 0.096 \text{kNm} \]

Plastic section modulus

\[W_{pl} = \frac{80 \times (11)^2}{4} \]
\[W_{pl} = 2420 \text{ mm}^3 \]

Moment capacity of section

\[M_c = 130 \text{ N/mm}^2 \times 2420 \text{ mm}^3 \times (10)^{-6} \]
\[M_c = 0.286 \text{kNm} \]

OK
Handrail brackets:

Section (C)

Dimensions of section = 80 mm wide x 7mm thick

Factored applied moment
M = 1.843 kN x 0.033
 = 0.061 kNm

Plastic section modulus
W_{pl} = \frac{80 \times (7)^2}{4}
 = 980 mm^3

Moment capacity of section
M_c = 130 N/mm^2 x 980 mm^3 x (10)^{\frac{6}{1.1}}
 = 0.116 kNm > 0.061 kNm OK

Shear force at section (C)
V = 1.843 kN

Design plastic shear resistance
V_{pl, RD} = \frac{A_v (f_y / \sqrt{3})}{\gamma_{MO}}
 = \frac{(80 \times 7) \times (190 / 1.732) \times (10)^{\frac{3}{1.0}}}{10}
 = 61.43 kN > 1.843 kN OK

The handrail brackets are adequate to resist the ultimate design bending and shear forces in respect of the maximum handrail span of 3.50 metres between bracket centres.

Handrail bracket fixing bolt forces: (2 No. M10 bolts top; 1 No. M10 bolt bottom of bracket).

Moments taken about the lower bolt for the direct pull-out force on the top 2 No. bolts:

Consider the maximum span c/c brackets of 3.50 m (loaded length of handrail 3.32 m)

Factored load on bracket
H = 1.843 kN

Direct tension on top 2 bolts
T = \frac{1.843 \times 0.113}{0.0423}
 = 2.46 kN/bolt (ultimate load)
 = 1.64 kN/bolt (working load)

BS 6180:2011, section 6.5, recommends that barrier fixings, attachments and anchorages should be designed to withstand a greater load than the design loading for the barrier generally. This is intended to ensure that under an extreme load condition, barriers show indications of distress by distortion, before there is any possibility of sudden collapse due to failure of the fixings. A 50% increase in the design load on fixings is recommended.

Applying the above recommendation, the ultimate direct pull-out force on the upper bolts becomes 2.46 x 1.5 = 3.69 kN/bolt. The working load pull-out force on the upper bolts becomes 1.64 kN x 1.5 = 2.46 kN/bolt.

The nominal tension capacity of M10 (8.8 grade) bolts is greater than these design forces. The allowable load is therefore determined by the pull-out resistance of the drilled resin anchor bolts or similar, and also by the strength of the structure into which they are installed to support these loads, and not by the tension capacity of the bolts themselves.
Handrail brackets: working loads on fixing bolts:
For shorter standard length handrails the pull-out forces on bracket fixing bolts are proportionally lower.

<table>
<thead>
<tr>
<th>Handrail length</th>
<th>opening size</th>
<th>working load tension on each upper bolt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1280mm</td>
<td>1020mm</td>
<td>0.76 kN</td>
</tr>
<tr>
<td>1500mm</td>
<td>1240mm</td>
<td>0.92 kN</td>
</tr>
<tr>
<td>1680mm</td>
<td>1420mm</td>
<td>1.05 kN</td>
</tr>
<tr>
<td>1860mm</td>
<td>1600mm</td>
<td>1.19 kN</td>
</tr>
<tr>
<td>2180mm</td>
<td>1920mm</td>
<td>1.42 kN</td>
</tr>
<tr>
<td>2450mm</td>
<td>2190mm</td>
<td>1.62 kN</td>
</tr>
<tr>
<td>2840mm</td>
<td>2580mm</td>
<td>1.91 kN</td>
</tr>
<tr>
<td>3200mm</td>
<td>2940mm</td>
<td>2.18 kN</td>
</tr>
<tr>
<td>3580mm</td>
<td>3320mm</td>
<td>2.46 kN</td>
</tr>
</tbody>
</table>

Lower rail brackets: These brackets have the same sectional profile as the handrail brackets but are 40mm wide rather than 80mm. 1 No. 12mm diameter hole is provided top and bottom for M10 bolts, making the effective width of the vertical leg 28mm. The section modulus and moment capacity of the brackets is therefore half that of the handrail brackets. The brackets are installed at 500mm nominal maximum centres. The brackets support the dead load from the glass and rails.

- Dead load from glass + rails = 0.26 kN/m x 1.35 (γ) = 0.351 kN/m factored
- Factored vertical load per bracket = 0.351 / 2 = 0.176 kN/bracket at 500mm centres.

Factored moments:

- Section (A)
 - $M = 0.176 \text{kN} \times 0.08$ = 0.0141 kNm
 - $M_c = 0.238 \text{kNm} / 2$ = 0.119 kNm OK

- Section (B)
 - $M = 0.176 \text{kN} \times 0.07$ = 0.0123 kNm
 - $M_c = 0.286 \text{kNm} / 2$ = 0.143 kNm OK

- Section (C)
 - $M = 0.176 \text{kN} \times 0.008$ = 0.0014 kNm
 - $M_c = 0.116 \text{kNm} / 2$ = 0.058 kNm OK

The brackets are adequate to resist the design factored moments.

Bolt loads: (1 No. 10mm diameter bolt top and bottom of bracket)

- Direct tension on top bolt (factored load) $T = \frac{0.176 \text{kN} \times 0.086}{0.0423}$ = 0.36 kN
- Applying the 50% increase in fixing loads recommended in BS 6180, this becomes **0.54 kN/bolt** (ultimate load) and **0.36 kN/bolt** (working load).

- Shear force: on 2 No. bolts $= \frac{0.176 \text{kN}}{2}$ = 0.09 kN/bolt say

Applying the 50% increase as per BS 6180, this becomes **0.135 kN/bolt (ultimate load)** and **0.09 kN/bolt (working load)**.
Glass infill:

Design standard = Institution of Structural Engineers publication *Structural use of glass in building (second edition)* February 2014.

Glass type = 10mm thermally toughened soda silicate safety glass with smooth ‘as produced’ finish with polished edges.

Characteristic design strength = 120 N/mm²

Ultimate design stress $f_{gd} = \frac{K_{mod} \times K_{sp} \times f_{gk}}{\gamma_{M;A}} + \frac{K_{v} (f_{bk} - f_{gk})}{\gamma_{M;V}}$

where:

- $K_{mod} = 30$ second load duration factor
- $K_{sp} = 0.89$ for a domestic balustrade load
- $f_{gk} = 45$ N/mm²
- $K_{v} = 1.0$ for float glass ‘as produced’
- $f_{bk} = 120$ N/mm²
- $\gamma_{M;A} = 1.6$ for basic annealed glass
- $\gamma_{M;V} = 1.2$ for surface prestressed (toughened) glass

Ultimate design stress $f_{gd} = 0.89 \times 1.0 \times 45 + \frac{1.0 (120 - 45)}{1.6 \times 1.2} = 87.53$ N/mm²

Section modulus of glass $Z = \frac{1000 \times (10)^2}{6} = 16667$ mm³/m

Ultimate moment capacity of glass 1000mm wide x 10mm thick $M_u = f_{gd} \times Z = 87.53$ N/mm² $\times 16667$ mm³ $\times (10)^{-6} = 1.459$ kNm/m
Glass panels can be any length.

For the purposes of design and checking a nominal glass panel width of 1000mm simply supported between the bottom rail and the handrail has been used.

Two separate design conditions are considered:

Uniformly distributed service load on the infill of 1.0 kN/m²

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Formula</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultimate UDL on glass</td>
<td>$1.0 \text{ kN/m}^2 \times 1.5$</td>
<td>1.5 kN/m^2</td>
</tr>
<tr>
<td>Ultimate moment on glass due to UDL on 1.0m span</td>
<td>$1.5 \text{ kN/m}^2 \times (1.0)^2 \times \frac{1}{8}$</td>
<td>0.1875 kNm/m</td>
</tr>
</tbody>
</table>

The reaction on the handrail from the UDL on the glass is less than the design horizontal UDL on the handrail. Therefore the design load on the glass is not a critical design case in terms of the handrail.

Service point load of 0.5 kN applied in any position on the glass

Worst case for bending stress occurs when the point load is applied at mid-height of the glass.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Formula</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultimate moment on glass due to point load</td>
<td>$(0.50 \text{ kN} \times 1.5) \times 1.0m$</td>
<td>0.1875 kNm</td>
</tr>
</tbody>
</table>

Conservatively, it is assumed that this bending moment is carried by a 300mm wide vertical strip of glass.

<table>
<thead>
<tr>
<th>Moment capacity of 300mm strip</th>
<th>$1.459 \text{ kNm} \times 0.30$</th>
<th>0.4377 kNm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$> 0.1875 \text{ kNm}$</td>
<td>OK</td>
</tr>
</tbody>
</table>

Glass deflection:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Formula</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inertia of glass 1000 x 10mm</td>
<td>$1000 \times (10)^3 / 12$</td>
<td>83333 mm^4</td>
</tr>
<tr>
<td>Service load deflection due to a UDL of 1.0 kN/m²</td>
<td>$\frac{5 \times (1000 \times 1.0)^3}{384 \times 70 \times 83333}$</td>
<td>2.2322 mm</td>
</tr>
<tr>
<td>Inertia of glass 300 x 10mm</td>
<td>$0.03 \times 83333 \text{ mm}^4$</td>
<td>25000 mm^4</td>
</tr>
<tr>
<td>Service load deflection due a point load of 0.5 kN at mid-span</td>
<td>$\frac{500 \times (1000)^3}{48 \times 70 \times 25000}$</td>
<td>5.95 mm</td>
</tr>
</tbody>
</table>

The glass is adequate in terms of both bending strength and deflection.
Glass deflection:
Consider service load deflection of the glass due to the design UDL:

Inertia of glass 10mm thick = \(\frac{1000 \times (10)^3}{12} \) = 83333 mm\(^4\)
x 1000mm long

Service load deflection due to a UDL of 1.0 kN/m\(^2\) = \(\frac{5 \times w \times L^4}{384 \times E \times I} \)
on a simply supported span of 1.0m = \(\frac{5 \times (1000 \times 1.0) \times (1000)^3}{384 \times 70000 \times 83333} \) = 2.232 mm

< span = OK
65

Conservatively, for deflection calculation purposes consider that the design point load is carried by a 300mm wide vertical strip of glass:

Inertia of glass 10mm thick = \(\frac{0.3 \times 83333}{4} \) = 25 000 mm\(^4\)
x 300mm long

Service load deflection due to a point load of 0.5 kN applied at mid-span = \(\frac{PL^3}{48 \times E \times I} \)
= \(\frac{500 \times (1000)^3}{48 \times 70000 \times 25000} \) = 5.95 mm

< span = OK
65

The glass is adequate in terms of both bending strength and deflection.

Handrail – bracket connection:
The handrail is connected to the wall brackets by means of 2 No. 4.8mm diameter stainless steel self-tapping screws.

The maximum opening size (and therefore maximum loaded length of handrail) is 3.32m.

Horizontal service (working) load on the wall fixing for a clear span of 3.32m = 0.74 kN/m x 1.66m = 1.23 kN/fixing

Working load shear force on the 4.8mm x 19mm stainless steel self-tapping screws = 1.32 kN/2 = 0.615 kN/bolt or screw

Ultimate load shear force on the anchor bolts and screws = 0.615 kN/bolt x 1.5 = 0.923 kN/bolt or screw
Shearing force, construction screws

Dimensioning value F_{sd} kN/screw. Attention is paid both to failure of the edge of the hole and shearing failure in the screw. Safety class 1.

Properties of stainless steel self-tapping screws:

<table>
<thead>
<tr>
<th>Material type</th>
<th>stainless steel grade 304</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic ultimate tensile strength</td>
<td>621 N/mm2</td>
</tr>
<tr>
<td>Characteristic 0.2% proof stress</td>
<td>290 N/mm2</td>
</tr>
</tbody>
</table>

Phillips self-tapping screws: ultimate shear loads taken from the table in Lindab’s technical literature.

<table>
<thead>
<tr>
<th>Thickness of aluminium in the handrail at screw positions</th>
<th>5.4mm</th>
</tr>
</thead>
</table>

Ultimate shear capacity of 4.8mm diameter screws, safety class 1 for Nom t = 2.5mm

3.64 kN/screw (from Lindab’s table)

For safety classes 2 and 3 this value is divided by 1.1 and 1.2 respectively. Safety class 3 is the highest safety class and has been assumed to apply to balustrades. The shear capacities given in Lindab’s table are based upon material having a tensile yield limit of 350 N/mm2. The values given in the table have been adjusted to allow for the yield stress of stainless steel type 304 (290 N/mm2). The ultimate shear capacity of 3.64 kN/screw has therefore been reduced by 290/350 and divided by 1.2 to represent safety class 3 and 290 N/mm2 yield stress rather than 350 N/mm2. The adjusted ultimate shear capacity is then 2.51 kN/screw. Exceeds 0.923 kN/screw and therefore OK.

In the area of number pairs in the table and marked \circ, shearing failure in the screw is decisive.

The value to the left in each number pair relates to carbon steel screws, while the number to the right relates to stainless steel screws.

<table>
<thead>
<tr>
<th>Nom t mm</th>
<th>When calculating t mm</th>
<th>Tensile yield limit N/mm2</th>
<th>Screw diameter 4.2 mm</th>
<th>Screw diameter 4.8 mm</th>
<th>Screw diameter 5.5 mm</th>
<th>Screw diameter 6.3 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>0.32</td>
<td>250</td>
<td>0.26</td>
<td>0.54</td>
<td>0.28</td>
<td>0.61</td>
</tr>
<tr>
<td>0.5</td>
<td>0.41</td>
<td>250</td>
<td>0.38</td>
<td>0.66</td>
<td>0.40</td>
<td>0.79</td>
</tr>
<tr>
<td>0.6</td>
<td>0.59</td>
<td>250</td>
<td>0.59</td>
<td>0.86</td>
<td>0.56</td>
<td>0.98</td>
</tr>
<tr>
<td>0.7</td>
<td>0.60</td>
<td>350</td>
<td>0.93</td>
<td>1.41</td>
<td>1.00</td>
<td>1.61</td>
</tr>
<tr>
<td>0.8</td>
<td>0.73</td>
<td>350</td>
<td>1.25</td>
<td>1.72</td>
<td>1.34</td>
<td>1.96</td>
</tr>
<tr>
<td>1.0</td>
<td>0.93</td>
<td>350</td>
<td>1.29</td>
<td>1.56</td>
<td>1.38</td>
<td>1.79</td>
</tr>
<tr>
<td>1.0</td>
<td>0.93</td>
<td>350</td>
<td>1.80</td>
<td>2.19</td>
<td>1.93</td>
<td>2.50</td>
</tr>
<tr>
<td>1.2</td>
<td>1.13</td>
<td>350</td>
<td>2.41</td>
<td>2.66</td>
<td>2.58</td>
<td>3.04</td>
</tr>
<tr>
<td>1.5</td>
<td>1.42</td>
<td>350</td>
<td>2.99</td>
<td>3.39</td>
<td>3.09</td>
<td>3.39</td>
</tr>
<tr>
<td>1.5</td>
<td>1.42</td>
<td>350</td>
<td>3.09</td>
<td>4.03</td>
<td>3.16</td>
<td>3.34</td>
</tr>
<tr>
<td>2.0</td>
<td>1.91</td>
<td>350</td>
<td>3.03</td>
<td>4.03</td>
<td>3.16</td>
<td>3.34</td>
</tr>
<tr>
<td>2.5</td>
<td>2.40</td>
<td>350</td>
<td>3.03</td>
<td>4.03</td>
<td>3.16</td>
<td>3.34</td>
</tr>
</tbody>
</table>

Excerpt of the table at the foot of page 7 of Lindab’s literature headed ‘Shearing force, construction screws’.
SUMMARY

Juliet balconies using BALCONY 2 System (Aerofoil) handrail

1. The Juliet Balconette system, comprising Balcony 2 type handrails and bottom rails in extruded aluminium grade 6063 T5, in conjunction with 10mm thick toughened glass panels, is adequate to support the imposed loads specified in relevant British and European standards in respect of the occupancy classes listed on page 2, for spans up to **3.50 metres** between the centres of handrail support brackets.

2. The handrail support brackets in extruded aluminium grade 6063 T5 are adequate to support the specified loads for spans up to **3.50 metres** between handrail bracket centres. The bottom rail brackets in extruded aluminium grade 6063 T5 are adequate at up to **500mm** nominal centres between the brackets.

3. For the design loading and 3.50 maximum span between handrail bracket centres, the calculated working load direct pull-out force on each of the top 2 No. bolts on the handrail bracket fixing bolts is **2.46 kN**. For smaller width openings the working load direct pull-out force on the top 2 No. bolts on the handrail brackets are reduced, as listed below:

<table>
<thead>
<tr>
<th>Handrail length</th>
<th>Opening size</th>
<th>Working load tension on each upper bolt (including 50% increase recommended in BS 6180)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1280mm</td>
<td>1020mm</td>
<td>0.76 kN</td>
</tr>
<tr>
<td>1500mm</td>
<td>1240mm</td>
<td>0.92 kN</td>
</tr>
<tr>
<td>1680mm</td>
<td>1420mm</td>
<td>1.05 kN</td>
</tr>
<tr>
<td>1860mm</td>
<td>1600mm</td>
<td>1.19 kN</td>
</tr>
<tr>
<td>2180mm</td>
<td>1920mm</td>
<td>1.42 kN</td>
</tr>
<tr>
<td>2450mm</td>
<td>2190mm</td>
<td>1.62 kN</td>
</tr>
<tr>
<td>2840mm</td>
<td>2580mm</td>
<td>1.91 kN</td>
</tr>
<tr>
<td>3200mm</td>
<td>2940mm</td>
<td>2.18 kN</td>
</tr>
</tbody>
</table>

4. For bottom rail brackets installed at 500mm nominal centres, the calculated working load direct pull-out force on the top bolt is **0.36 kN**, including the 50% increase recommended in BS 6180. The calculated working load shear force on each of the 2 No. fixing bolts **0.09 kN/bolt**.

5. The installers should satisfy themselves that the fixing bolts chosen are suitable to resist the loads specified in items 3 and 4 above, and also that the structure into which they are to be installed can support these loads.

6. The 10mm thick thermally toughened safety glass panels are adequate to support the design loads specified in the relevant British and European Standards.

7. The 4.8mm diameter self-tapping stainless steel screws connecting the handrail to the aluminium wall brackets are adequate to support the design loads specified in relevant British and European Standards.

Prepared for and on behalf of Balconette by
A G Bice CEng FICE FStructE